BANACH SPACES OF POLYNOMIALS AS “LARGE” SUBSPACES OF l∞-SPACES
نویسنده
چکیده
In this note we study Banach spaces of traces of real polynomials on R to compact subsets equipped with supremum norms from the point of view of Geometric Functional Analysis.
منابع مشابه
On an atomic decomposition in Banach spaces
An atomic decomposition is considered in Banach space. A method for constructing an atomic decomposition of Banach space, starting with atomic decomposition of subspaces is presented. Some relations between them are established. The proposed method is used in the study of the frame properties of systems of eigenfunctions and associated functions of discontinuous differential operators.
متن کاملOn The Convergence Of Modified Noor Iteration For Nearly Lipschitzian Maps In Real Banach Spaces
In this paper, we obtained the convergence of modified Noor iterative scheme for nearly Lipschitzian maps in real Banach spaces. Our results contribute to the literature in this area of re- search.
متن کاملStrictly Singular Uniform λ−Adjustment in Banach Spaces
Based on the recently introduced uniform λ−adjustment for closed subspaces of Banach spaces we extend the concept of the strictly singular and nitely strictly singular operators to the sequences of closed subspaces and operators in Banach spaces and prove theorems about lower semi Fredholm stability. We also state some new open questions related to strict singularity and the geometry of Banach ...
متن کاملm at h . FA ] 2 6 O ct 1 99 3 ON COMPLEMENTED SUBSPACES OF SUMS AND PRODUCTS OF BANACH SPACES
It is proved that there exist complemented subspaces of countable topo-logical products (locally convex direct sums) of Banach spaces which cannot be represented as topological products (locally convex direct sums) of Banach spaces The problem of description of complemented subspaces of a given locally convex space is one of the general problems of structure theory of locally convex spaces. In ...
متن کامل